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Abstract-The stability of the conduction regime of natural convection in a vertical melted ice layer initially 
assumed to be at its melting temperature is studied using the linear theory. The stability curves, Gr, = 
Gr,(T,) and h, = h,(T,), show that the critical Grashof number Gr, and the critical melting thickness h, are 
dependent upon the stepped wall temperature T,, such that as T, is increased the change in heat transfer 
mode from conduction to convection is enhanced for all values of T, in the range of I-30°C. Furthermore, it is 
found that the instability sets in as vertical travelling waves, with the secondary flow occurring as two-column 

waves for T, i 7.1”C and T, > 9.4”C, and as three-column waves for 7.1”C < T, < 9.4”C. 

NOMENCLATURE Superscripts 

wave number ; 
specific heat ; 

I mean quantities; 
, 
I perturbed quantities. 

ci/Uo, non-dimensional wave speed; 
wave speed ; 
amplification factor ; 
ajar, operator ; 
gravity ; 
= g A, Tf h3/vZ, Grashof number; 
= g & T,h3/v2, modified Grashof number; 
= ZSd(at), thickness of water layer; 
heat of fusion ; 
thermal conductivity; 
pressure; 
= v/u, Prandtl number; 
= h dh/2a dt, parameter; 
= C, T,/h,, Stefan number; 
temperature; 
temperature of the heated wal1; 
time ; 
= g I, Tf h*/v, characteristic thermal 
velocity ; 
velocity components; 
= (x, y)/h(t), non-dimensional 
coordinates; 
coordinates with y measured normal to the 
water layer and x parallel to it. 

THE PURPOSE of this study is to gain insight into the 
process of melting. Attention is focused on the in- 
teraction between the thermal convection currents in 
the liquid and the formation of liquid at the instant 
melting begins. Ice layers in general are subjected to 
inevitable heat sources, thus temperature differences 
appear and heat is transferred by conduction and 
~nv~tion. Where as the effect of induction can be 
easily described the convection process still yields 
some unsolved problems, due to the complex govern- 
ing equations of the stability problems involved and 
the density anomaly of water [l]. 

The stability of the conduction regime of natural 
convection of common fluids in a vertical slot has been 
investigated in the past. Starting with the work of 
Gershuni [2] that limited for fluids having small 
Prandtl number, Rudakov [3] obtained results for 
Prandtl numbers up to 10 and found the instability to 
set as stationary convection at a Grashof number of 
about Gr, = 7700. This result was experimentally 

confirmed by Vest and Arpaci [4]. On the other hand, 
for very large Prandtl numbers Gill and Kirkham [5] 
found the instability to set in as travelling waves with 
Gr, = 9.4 x lo3 Pr- ’ I*. Korpella et al. [6] confirmed 
the results of the above investigators and covered a 
wide range of Prandtl numbers and showed a limiting 
value of Pr = 12.7 for the transition from stationary 
cells to travelling waves in the verticai direction. 

Greek symbols 

%V 
PV 
8, 

thermal digusivity and kinematic viscosity; 
density of the fluid. 
= T/T,, dimensionless temperature; 
= U&v, dimensionless stream function; 
coefficient of thermal expansion at the 
interface labsolute vaiuel: 

dT, average coefficient of 

thermal expansion ; 

r, = 
s 

vdt/h*, dimensionless time. 

In all these earlier studies, it is assumed that the 
temperature gradient is constant and the density is a 
linear function of temperature. However, these appro- 
ximations do not apply accurately for a melting layer 
of ice, because the water density near 4°C is no longer 
linear with the temperature. In reviewing the literature 
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on the stability of melting ice, it was found that the 
published results are only restricted for the horizontal 
case under different dynamic and thermal boundary 
conditions [7- 131. 

These results indicate that the onset of free con- 
vection expressed by the critical Rayleigh number is 
not a single value but varies with temperature of the 
heated wall. Therefore, the present investigation is 
devoted to study the stability criteria ofvertical melted 
ice layer confined inside a slender slot and subjected to 
a temperature difference varying from 0 to 30°C. 

ANALYSIS 

A Stefan problem which deals with the melting of an 
ice layer that is conlined inside a vertical slender slot is 
considered as shown in Fig. 1. Initially the ice layer is 
assumed to be at its melting temperature T = 0°C. At 
time t = 0, heating is initiated at one of the side walls 
by a step increase in the wall temperature to a constant 
value T,. As a result of heating a melt layer is formed as 
solid ice is transformed into water. For small thickness 
of the water layer, the heat is transferred only by 
conduction (except at the ends of the slot). Con- 
sequently, a laminar parallel flow will be developed as 
a result of the density difference in the fluid. As this 
thickness is gradually increased with time, the initial 
laminar motion breaks up and secondary flow appears 
in the form of either stationary horizontal cells or 
travelling waves. In this study, the conditions marking 
the onset of this secondary flow in the formed water 
layer, where the density anomaly can not be neglected, 
are investigated analytically as described below. 

FIG. 1 

The base flow 
Subject to the usual Oberbeck-Boussinesq approxi- 

mation, the governing equations of motion and energy 
for the conduction regime of the natural laminar flow 
may be given as: 

dti 1 ?P -=- 
?t 

-+,,??__-/) 
po ?.u ?J’Z PO 

9. 

i‘i- (?2 T 

z=ap 

with the boundary conditions at t 2 0, 

li=o at y = O,h(t), 

T==T, at y = 0, 

T=O at y = h(t), 

ar 
- K - = p&f: 

?Y 
at y = h(t), 

and a mass balance for the closed system 

tidy = 0. 

(1) 

(2) 

(3) 

(4) 

Here for the base flow, U is the velocity in the vertical 
direction (i.e. x-direction), P and T are the pressure 
and temperature respectively, p is the density, and h is 
the thickness of the melted layer which is a function 
of time (see Nomenclature). 

The density-temperature relationship for water 
within the temperature ranges concerned is assumed to 
be [14] : 

p = p,[l - d, (T - T,)’ - i., (T - T,,J3] (5) 

where Pm is the maximum density of water that occurs 
at T, = 4°C Ai = 0.793953 x 10m5 ‘Cz and i, = 
- 0.6559 x lo- “C3. Before proceeding further, the 
similarity transformation is applied on equations (1) 
and (2) to transform the independent variables (t, y) 
into a new dimensionless variable Y = y/h(t). With U, 
= gli Tf h*/a as the thermal characteristic velocity, 
T 1 as reference temperature, and PO = g poll T f h as a 
scale for pressure, one obtains: 

D2i7 + g(Y Di7 - 20) 

= F - (A, + 8)* - /(A, + 8)3, (6) 

D26+2S2YD~=0, (7) 

U(O) = U(1) = 0, 
(8) 

B(O)= 1, 8(1)=0, 

D@ 1) = - 2S*/St, 

and (9) 

s 

I 
OdY =O. 

0 

In these equations, F = - (dP/dX) + (pogh/P,), A, = 
- T JT,, I = i,T,/1, ; see also the Nomenclature. In . . 
the above equations, the quantities subscribed by ‘0 
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are chosen equal to those with subscript ‘m’. 
For the range of the stepped wall temperature T, 

considered in this study, the Stefan number St, is of the 
order of 10-l. The order of which suggests that the 
parameter S2 related to it by equation (8) is of the same 
order (i.e. S* Y $St,) [15]. In addition from the 
relation between h and Sz given above, it can be shown 
that the melting rate of ice expressed by the interfacial 
velocity, Vi, is of the order of lo- 3 cm/s for a value of h 
2 1 cm. This velocity is extremely small compared to 
the thermal characteristic velocity U, (N 10’ cm/s) 
thus its influence on the fluid motion is invisible. 
Furthermore, the effect of the void space created as a 
result of volume shrinkage (9%) during the phase 
transition from ice to water is also negligible since the 
shrinkage rate at the interface is about 9% of the 
magnitude of Vi. 

Therefore, equations (4)-(g) could be simplified 
further by disregarding the terms containing the 
parameter S2. In doing so, the resultant equations can 
be solved analytically for @and 0 respectively. Their 
solutions are given as: 

(101 

B=l--Y, 

where 

- Y. (11) 

The coefficients a,, a2 and F are to be obtained by 
letting the solution (10) for ii satisfy its boundary 
conditions (8) and (9). There expressions are quite 
lengthy and are omitted here. 

To derive the perturbation equations needed for the 
analysis of stability which occurs as two-dimensional 
transverse waves [4], small quantities on the velocity 
components, pressure and temperature are defined as : 

u = O(Y) -I- u’, v = v, 

P=P(X)+P, T=FF(Y)fT’. (12) 

Introducing these variables into the conservation 
equations of mass, momentum and energy, neglecting 
the non-linear terms, the following system of linear 
perturbations is obtained in the dimensionless form 
as: 

(13) 

2s A 

+pr XaX C 
E+YDS-2P (15) 

aEr ^ 
+GrLig+GrDBP 

z ? 

=;V2@+g Xg+ YD& 
i 

. 

> 
(16) 

subject to the boundary conditions 

0= P=8=0 at Y=O,l. (17) 

In the above equations, C; = Cirashof number 
functionf= 2(A - Y) + 3&A - Y)’ where A = (T, 
- T,)/T,, and Vz = (a2/aX2) + (a2/aY2), with z = 
Jv dt/h’ as dimensionless time (Fourier number). 

A stream function (I; which satisfies the continuity 
equation (13) is defined as: 

_ 

o=DJ;, p= -$. (18) 

Introducing $ into equations (13)-( 17), eliminating 
the pressure fi by cross-differentiation and neglecting 
the terms containing the small parameter (2S2/Pr), the 
end result leads to: 

a 

( 1 
- - V2 
a7 

V25 

f Gr&(uV2$ - D2i7$) = D(fcT), (19) 

(;+o”)d+Gr&(@?-Df@)=O (20) 

with the boundary conditions 

$=D$=(?=O. (21) 

In accordance with‘linear stability theory the formal 
solutions for the perturbations 6 and &may be taken in 
the form [6] 

[4&q = [Q% YX B(z, Y)] eioX (22) 

where u is the wave number of the disturbances, i = 
J-l. Substituting equation (22) into equations 
(18)-(21), one obtains the following eigenvalue 
problem : 

[ 
& - (D2 - a2) 1 (D2 - a’) II/ 

+ iaGr[t7(D2 - a’) Ifi - D2tiJ/] = D(f@), (23) 

I 
& - ; (D2 - a’) 1 B + iaGr[oB - D@] = 0, 

(24) 

$=DDq(l=B=O at Y=O,l. (25) 

The above stability problem is solved by the appli- 
cation of the Galerkin method [16]. Following Ozisik 
and Hassab [ 171, the functions $ and 0 are represented 
by a series of orthogonal functions that satisfy the 
boundary conditions (25) as : 
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$(7, Y) = i: L(7MLJYI (26) 
m- 1 

H(7, Y) = c %(7Pk,(YL (27) 
m-1 

The orthogonal functions 4, and 0, are chosen as 

[181, 

AJY) = 
cash aY - cosCL!,Y 

cash a - cos 021, 

sinh aY - I&,,, sin ~ti,,,Y - 
sinh a - ~2, sin %,,, ’ 

(28) 

6,(Y) = sin (m 7r)Y (29) 

and %m s are the positive roots of 

J&2 - ,2 
(cash aces +- 1) +p 

2a@ 
sinh a sin +V = 0 

(30) 

The above solutions for II/ and 0 are introduced into 
equations (23) and (24) and the orthogonality con- 
ditions are utilized to yield the following matrix 
equation : 

dX 
dr+BX=O (31) 

where, X = {d,, e,}T is the transpose of the coefficient 
vector associated with N-term expansion, and B is a 
matrix of 2N x 2N complex elements resulting from 
orthogonalization. The matrix eigenvalue problem 
(31) has a variable time coefficients because the 
Grashof number Gr is a function of the melting 
thickness h which is in turn a function of time h = 
2S,/(cct). However the rate of growth of this melting 
thickness is expected to be much smaller than that of 
the disturbance (II/ or 0). Therefore, it is quite reason- 
able to treat the coefficients of the matrix B as 
constants in solving it with the complex QR algorithm 
[19, 201. 

The stability criteria of this system is established by 
determining its eigenvalues C, = C, + Ci, (where Ci = 
wave speed, n = 1,2,. . ., 2N). That is, for a given choice 
of the system parameter T, there is a least of two 
minimum values of Gr with respect to a that cause 
either the real part of the least eigenvalue C, = 0, Ci # 
0 for travelling waves, or both components C, = Ci = 
0 in the case of stationary cells. Below this value the 
heat flows by conduction only and the main flow is 
stable. Therefore, this minimum Grashof number 
corresponds to the onset of convection and is referred 
to as the critical Grashof number Gr,. In carrying out 
the computations by the Galerkin method, for Pr 
based on the viscosity at the mean of the boundary 
temperatures, it is found that 10 terms in the series of 
trial functions are very sufficient to get an excellent 
convergence in the range of interest of T,. A sample of 
these results are illustrated in Table 1. 

Table 1. Gr, as a function of the number of approximation N 

Data N 4 6 8 10 12 

T, = 1°C 
Gr, 456.75 420 476.5 480.23 481.25 

a = 1.325 

7; = 8°C 
Gr, 3425 3271 3249 3247.3 3246.6 

a = 2.35 

RESULTS AND DISCUSSION 

The results of this analysis could be classified in 
terms of the stepped wall temperature T, into three 
regions of completely different characteristics: region I 
(T, < 7,1”C),regionII (7.1 _< T, < 9.4”Qandregion 
III (T, > 9.4”C). Before presenting the effect of each 
region on the onset ofinstability,it isimportant first, to 
consider the base flow velocity profile in these regions 
which will throw some light on this problem. 

Figure 2(a) is a plot of the velocity profile in regions I 

I21 

-201 
FIB;. 2. 
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and III respectively. Clearly, in region I, a unicellular 
motion sets up in such a manner that the fluid near the 
hot wall descends down and that near the interface 
ascends upward. Conversely, in region III, an opposite 
unicellular motion occurs. The reason for this is that : 
In region I, the water layer near the hot wall is denser 
than that next to the interface, while in region III, the 
reverse is true. However, in region II, the fluid at the 
central part is denser than those next to the boun- 
daries. Therefore, as it is shown in Fig. 2(b), two 
parallel cells set up, with the fluid at the central part 
moving downwards and those adjacent to the boun- 
daries moving upwards. Furthermore, the effect of the 
stepped wall temperature T, on the base flow velocity 
i7 could be explained with the help of Fig. 3, which is a 
plot of the average coefficient of thermal expansion flvs 
T,. When jr1 < 8.2”C, fl has a negative decreasing 
function, and for T, > 8.2”C, pis positively increasing 
with T,. Since, the shear flow isdriven by the bouyancy 
effects which are linearly dependent upon 8, so, increas- 
ing T, will supress the non-dimensional base flow 
velocity in region I while expanding it in region III. 

The solution of this problem for T, in the range 
from 1 to 30°C (i.e. 8 < Pr < 13.5) indicates that the 
onset of instability sets in as oscillating waves travell- 
ing in the vertical direction with a wave speed, Ci, 
which is related to the maximum base flow velocity U,, 
as shown in Fig. 4. It is to be noted that, for water at 
room temperature or common fluids with Pr < 12.7, 
the onset of instability sets in as horizontal stationary 
cells [6]. The transition in the wave structure caused by 
the density anomaly of water could be due to the 
increasing participation of the potential energy as- 
sociated with the perturbed bouyancy field on the 
disturbance energy, although this is still less than that 
generated from the base flow. 

The calculations for the neutral stability curves 
summarized in Fig. 5 show that, as T, is increased, Gr, 
increases in region I, has two peaks in region II at 

T, , “C 
FIG. 3. 

I I I / I 
4 8 12 16 20 

T / 1 “c 

FIG. 4. 

temperatures of of 7.3 and 9.2”C respectively, and then 
gradually decreases in region III to a turning point at 
T, = 15°C where it increases again. The critical 
condition is also defined by another Grashof number 
&, based on the coefficient of thermal expansion fi at 
the interface (absolute value), in order to compare the 
results with that for common fluids. 

Gr = i-&s T,h3 
V2 (32) 

where PO is obtainable from equation (3) as 

PO = / - ; ~I,;* = (21, - 3&7-,)7-,. (33) 

These two Grashof numbers are related by: 

Gr = 8.3965 Gr,fT,. (34) 

In light of this relation, the modified critical Grashof 
number Gr, is calculated in terms of T, and presented 
with Gr, in the same figure. As shown in the figure the 
cutie of Gr, approaches an asymptotic value of about 
1300 in region III. 

The wave size at the critical condition expressed by 
the wave number (1 (a = 2n/A, A = wavelength) is 
found to vary with the stepped wall temperature T, 
reaching maximum value of a = 2.34 at T, = 8°C as 
shown in Fig. 6. 

So far, in presenting the stability results for the 
critical Grashof numbers, we could not interpret the 
effect of heating on the stability of the flow ; that is, at 
what values of T,, the instabi~ty is enhanced and/or 
delayed. The uncertainty is due to the dependence of 
Gr upon both T, and the melting thickness h which is 
not prescribable a priori. It is, therefore, appropriate to 
recast the stability results in terms of the melting 
thickness : 
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FIG. 5. 

FIG. 6 

and the melting time: 

h2 
t, = f 

2&r (36) 

at the onset of instability as demonstrated in Fig. 7. 
As shown in the Fig. 7, the effect of heating on the 

stability criteria expressed by h, and t, can be classified 
into three known regions as follows: 

(1) In region I, when T, < 4°C. the density profile 

has no maximum value, i.e. heating increases the 
density difference across the fluid layer, and accord- 

ingly, destablizing the flow. When T, > 4”C, the 

density profile has a maximum value due to the shift of 
the maximum density layer from the hot wall. In this 
case, heating has a smaller destabilizing rate although 

the instability sets in earlier owing to the higher 
temperature difference across the melted layer. 

(2) In region II, an interesting but unexpected 
variation of h, and t, with the stepped wall temperature 
T, is noticed. This trend may be attributed to the 

transition in the wave structure from two-column 

waves for T, < 7.X, to three-column waves for 7.1 < 
T, < 9.4”C, and back as two-column waves for T, > 

9.4”C. 

(3) In region III. heating has a significant destabiliz- 

ing effect because of the strong bending of the density 
profile resulting from the pronounced increase of the 
density difference. 

SUMMARY AND CORICLUSIONS 

The results of this problem which concerned with 

the stability of natural convection in a vertical melted 
ice layer initially at 0°C could be classified in terms of 

the stepped wall temperature T, into three regions: 
(1) For 7; < 7.1’C. the instability sets in as two- 

column waves travelling oppositely in the vertical 
direction with a wave speed which is nearly equal to the 
maximum base flow velocity. As 7; is increased, the 
wavelength increases to about 2.6 times the melting 
thickness h. Although heating increases Gr,, it is 
actually destabilizing the flow with a decreasing rate. 

(2) For 7.1 < T, < 9.4’C. the instability sets in as 
three-column waves. In this region, minimum wavel- 
ength and minimum wave speed occur at 8°C. Con- 
versely, maximum values of Gr, are observed at T, = 
7.3 and 9.2”C respectively. In this region heating also 
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Step-wall temperature T,, “C 

FIG. 7. 

destabilize the flow. 10. 
(3) For T, > 9.1r°C, the instability sets back as two- 

column waves with both wave speed and wavelength 
increasing as T, is increased. Moreover, heating has a 

11. 

destabilizing effect on the flow. 
12. 

13. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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APPARITION DE LA CONVECTION DANS UNE COUCHE DE GLACE EN FUSlON ENTRE 
DES PLAQUES VERTICALES 

R&urn&On Ctudie par une thCorie IinCaire la stabilitt du rtgime de conduction de la convection naturelle 
dans une couche verticale de glace en fusion initialement & la temperature de fusion. Les courbes de stabilitl, 
Gr, = Gr,(T,) et h, = h,(T,), montrent que le nombre de Grashof critique Gr, et I’dpaisseur critique fondue 
h, sent d&pendants de la tempbrature de la paroi T, et lorsque T, augmente le changement de mode transfert 
entre la conduction et la convection est accru pour toutes valeurs de T, dans le domaine l-30°C. De plus 
I’instabilitt apparait en ondes se dtplaqant verticalement,avec un boulement secondaire avec des ondes B 

deux colonnes pour T, < 7, 1°C et T, > 9,4”C, et des ondes g trois colonnes pour 7,l”C < T, < 9,4”C. 

EINSETZEN DER KONVEKTION IN EINER SCHMELZENDEN EISSCHICHT ZWISCHEN 
SENKRECHTEN PLATTEN 

Zusammenfassung-Die Stabilittiit des Bereichs der Wlrmeleitung der freien Konvektion in einer 
senkrechten schmelzenden Eisschicht wird unter der Annahme, dal3 sie zu Beginn die Schmelztemperatur 
habe, mit Hilfe der linearen Theorieuntersucht. Die Stabilittitskurven Gr, = Gr,(T,) und h, = h,(T,)zeigen, 
dal3 die kritische Grashof-Zahl Gr, und die kritische Schmelzdicke h, von der sprungartig aufgebrachten 
Wandtemperatur T, in der Weise abhingig sind, da8 mit steigendem T, die .&nderung der Wlrmeiiber- 
gangsform von Leitung in Konvektion fiir alle Werte von T, im Bereich von 1 bis 30°C beschleunigt wird. 
Femer wurde gefunden, daB die Instabilittit in Form senkrecht wandernder WeIIen einsetzt, wobei die 
SekundlrstrGmung fiir T, < 7, 1°C und T, > 9,4”C als Zweisdulen-Welle und fiir 7, 1°C < T, < 9,4”C als 

Dreisbulen-Welle erscheint. 

B03HMKHoBEHME KOHBEKUHM nPM ~~ABAEHMM cnox nbflA MEKAY 
BEPTMKAJIbHbIMM nflACTMHAMM 

AHHoralma-C nOMOuu+J JIrtHeiiHofi TeopeH HccnenyeTca ycToihiBocTb pewih4a TenJIOnpOBO~HOCTH 

npe eCTeCTBeHHOti KOHBeKL,WW a BepTHKanbHOM cnoe nbna npe ero nnasneaaa. npennonaraevzn, wo 

BHavane cnofi HaxOmiTcII npki TehmepaType nnaeneaea. KpkiBbIe ~CTO~WBOCTB Gr,= Gr,(T,) I( 

h,=h,(T,) nOKa3bIBaK)T. ~TO KpeTsqecKoe wcno rpaCrO@a Gr, H KpltreYecKan TOnuuiHa 30HbI 

pacnnaea h, 3arnicaT 0~ Tehmeparypbr cTeHKU T,: no Mepe yeenuqeaan T, nepexon 0~ pemma 

TennonpoBonHocTk+ K KoHBeKum ycumBaeTcn npe Bcex 3HaqeHmx T,, nemauuix a miana30He 0~ 

1 n0 30°C. KpOMe TOrO HafineHO, 'ITO HeyCTO~WBOCTb BOJHAKaeT B BAne BepTBKanbHblX 6eryuwx 

Bonn. npeseM npe T, < 7,l”C w T, > 9,4’C mopeqnoe -reqemie COCTOHT ~3 myxpanHbrx BonH, a npH 
7.1 C < i-, < 9.4”C ~~ A7 TpeXpRL,HbIX BOJIH. 


