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Abstract—The stability of the conduction regime of natural convection in a vertical melted ice layer initially
assumed to be at its melting temperature is studied using the linear theory. The stability curves, Gr, =
Gr{T,}and h, = h(T)), show that the critical Grashof number Gr_ and the critical melting thickness h, are
dependent upon the stepped wall temperature T, such that as T, is increased the change in heat transfer
mode from conduction to convection is enhanced for all values of T in the range of 1-30°C. Furthermore, it is
found that the instability sets in as vertical travelling waves, with the secondary flow occurring as two-column

waves for T, < 7.1°Cand T, > 94°C, and as

NOMENCLATURE
a, wave number;
C, specific heat;
C, ¢;/U,, non-dimensional wave speed;
C wave speed;
C, amplification factor;
D, d/0Y, operator;
g, gravity ;
Gr, = g A, T? h¥/v?, Grashof number;
Gr, = g B T#*/v?, modified Grashof number;
h, = ZS\/ {at), thickness of water layer;

L, heat of fusion;

k, thermal conductivity;

P, pressure;

Pr, = vy/a, Prandtl number;

S, = hdh/2a dt, parameter;

St = C, T,/h,, Stefan number;

T, temperature;

T,, temperature of the heated wall;

t, time;

Ue = g A, T? K%y, characteristic thermal
velocity;

UV, velocity components;

X.Y, = (x, y)/h(t), non-dimensional
coordinates;

X,¥, coordinates with y measured normal to the

water layer and x parallel to it.

Greek symbols

R thermal diffusivity and kinematic viscosity;
2 density of the fluid.

8, = T/T,, dimensionless temperature;

v, = Uyh/v, dimensionless stream function;
Bo» coefficient of thermal expansion at the

interface (absolute value);

L
Q

thermal expansion;

d
—pdT, average coefficient of
dT

B,

Po

vdt/h?, dimensionless time.
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three-column waves for 7.1°C < T, < 9.4°C.

Superscripts
~ mean quantities;
', perturbed quantities.

INTRODUCTION

THE pURPOSE of this study is to gain insight into the
process of melting. Attention is focused on the in-
teraction between the thermal convection currents in
the liquid and the formation of liquid at the instant
melting begins. Ice layers in general are subjected to
inevitable heat sources, thus temperature differences
appear and heat is transferred by conduction and
convection. Where as the effect of conduction can be
casily described the convection process still yields
some unsolved problems, due to the complex govern-
ing equations of the stability problems involved and
the density anomaly of water [1].

The stability of the conduction regime of natural
convection of common fluids in a vertical slot has been
investigated in the past. Starting with the work of
Gershuni [2] that limited for fluids having small
Prandtl number, Rudakov [3] obtained results for
Prandtl numbers up to 10 and found the instability to
set as stationary convection at a Grashof number of
about Gr, = 7700. This result was experimentally
confirmed by Vest and Arpaci [4]. On the other hand,
for very large Prandtl numbers Gill and Kirkham [5]
found the instability to set in as travelling waves with
Gr, = 94 x 10° Pr~*7” Korpella et al. [6] confirmed
the results of the above investigators and covered a
wide range of Prandtl numbers and showed a limiting
value of Pr = 12.7 for the transition from stationary
cells to travelling waves in the vertical direction.

In all these earlier studies, it is assumed that the
temperature gradient is constant and the density is a
linear function of temperature. However, these appro-
ximations do not apply accurately for a melting layer
of ice, because the water density near 4°C is no longer
linear with the temperature. In reviewing the literature
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on the stability of melting ice, it was found that the
published results are only restricted for the horizontal
case under different dynamic and thermal boundary
conditions [7-13].

These results indicate that the onset of free con-
vection expressed by the critical Rayleigh number is
not a single value but varies with temperature of the
heated wall. Therefore, the present investigation is
devoted to study the stability criteria of vertical melted
ice layer confined inside a slender slot and subjected to
a temperature difference varying from 0 to 30°C.

ANALYSIS

A Stefan problem which deals with the melting of an
ice layer that is confined inside a vertical slender slot is
considered as shown in Fig. 1. Initially the ice layer is
assumed to be at its melting temperature T = 0°C, At
time ¢t = 0, heating is initiated at one of the side walls
by a step increase in the wall temperature to a constant
value T',. Asaresult of heating a melt layer is formed as
solid ice is transformed into water. For small thickness
of the water layer, the heat is transferred only by
conduction (except at the ends of the slot). Con-
sequently, a laminar parallel flow will be developed as
a result of the density difference in the fluid. As this
thickness is gradually increased with time, the initial
laminar motion breaks up and secondary flow appears
in the form of either stationary horizontal cells or
travelling waves. In this study, the conditions marking
the onset of this secondary flow in the formed water
layer, where the density anomaly can not be neglected,
are investigated analytically as described below.
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The base flow

Subject to the usual Oberbeck—Boussinesq approxi-
mation, the governing equations of motion and energy
for the conduction regime of the natural laminar flow
may be given as:

i _Lch o )
3t py Ox vt po
T T
—a‘[‘ = a(’r}ﬁ 2)
with the boundary conditions at ¢ > 0,
=0 at y =0,h(z),
T==T, at y=0, (3)
T=0 at y = h(1),
-K %‘Z}; = PoLf% at y = h(1),

and a mass balance for the closed system

h
J udy =0. @)
0
Here for the base flow, i is the velocity in the vertical
direction (i.e. x-direction), P and T are the pressure
and temperature respectively, g is the density, and h is
the thickness of the melted layer which is a function
of time (see Nomenclature).

The density—temperature relationship for water

within the temperature ranges concerned is assumed to
be [14]:

p=pull =4 (T =T =4 (T = T,)] (5)

where p,, is the maximum density of water that occurs
atT, =4°C, 4 =0793953 x 10°°°C ?and i, =
— 0.6559 x 107 °C~ 3. Before proceeding further, the
similarity transformation is applied on equations (1)
and (2) to transform the independent variables (¢, y)
into a new dimensionless variable Y = y/h(t). With U,
= gA, T? h?/v as the thermal characteristic velocity,
T, asreference temperature,and Py = g pod, T2 hasa
scale for pressure, one obtains:
2
DU + g(Y DU - 20)
Pr
=F —(Ag + 0> = l(4, + 0)%, (6)

D29 + 28?Y DA = 0, (N
U0)=0(1) =0, @®)
f0)y=1, 8(1)=0,
DO(1) = — 28%/St,,
and ©)

1
f Udy =0.
V]

In these equations, F = —(dP/dX) + (pogh/P,), Ay =
—T./T,1 = A, T /4,; see also the Nomenclature. In
the above equations, the quantities subscribed by ‘0’
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are chosen equal to those with subscript ‘m’

For the range of the stepped wall temperature T,
considered in this study, the Stefan number St is of the
order of 107*. The order of which suggests that the
parameter S related to it by equation (8)is of the same
order (ie. §% ~ 15r) [15] In addition from the
relation between / and S? given above, it can be shown
that the melting rate of ice expressed by the interfacial
velocity, V', is of the order of 107 3 cmy/s for a value of h
~ 1 cm. This velocity is extremely small compared to
the thermal characteristic velocity U, (~ 10? cm/s)
thus its influence on the fluid motion is invisible.
Furthermore, the effect of the void space created as a
result of volume shrinkage (9%,) during the phase
transition from ice to water is also negligible since the
shrinkage rate at the interface is about 9% of the
magnitude of V..

Therefore, equations {4)-(9) could be simplified
further by disregarding the terms containing the
parameter S In doing so, the resultant equations can
be solved analytically for & and U respectively. Their
solutions are given as:

FY*z Y*4 y*S

12 2"

U=a, +a,Y*+ (10)

f=1-7Y,

Ti — Tm
Y¥=|—+ |- Y.
(%)
The coefficients a,, a, and F are to be obtained by
letting the solution (10) for U satisfy its boundary

conditions (8) and (9). There expressions are quite
lengthy and are omitted here.

where

{11

The stability equations

To derive the perturbation equations needed for the
analysis of stability which occurs as two-dimensional
transverse waves [4], small quantities on the velocity
components, pressure and temperature are defined as:

U=0W)+U, V=V,
P=PX)+P, T=T(Y)+T. (12)

Introducing these variables into the conservation
equations of mass, momentum and energy, neglecting
the non-linear terms, the following system of linear
perturbations is obtained in the dimensionless form
as:

U N
— + DV =
5X+ 0, (13)
ou oU op .
SAAINCRY bt =Ty
5t O 5X+GrD aX+VU+f9
252 XaU + YDU - 20 (14)
X
14 ov .
Fy GrU&-———DP+VV
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I
X— + YDV -2V} (15
+ 5 <6X+ ) {15)

g—é+GrU?—q—+GrDOV

1 252 i)
- X+
Pr o Pr (

= YDQ) (16)

subject to the boundary conditions
U=V=0=0 at Y=0,1 an

In the above equations, Gr = Grashof number
functionf = 2(4 — Y) + 3[(A — Y)* where 4 = (T,
— T,.)/T,, and V? = (3*/0X?) + (6%/0Y?), with r =
fvdt/h* as dimensionless time (Fourier number).

A stream function § which satisfies the continuity
equation (13) is defined as:

%
éx’

=Dy, V=~ (18)
Introducing ¥ into equations (13)~(17), eliminating
the pressure P by cross-differentiation and neglecting
the terms containing the small parameter (252/Pr), the
end result leads to:

é .
(v

N Gr.;f(avw; ~D0y)=D(fb), (19)

(i_,.vﬂ)m Gr—m(Ué D#J) =0 (20)
dt  Pr

with the boundary conditions
y=Df=0=0 21

In accordance with-linear stability theory the formal
solutions for the perturbations { and § may be taken in
the form [6]

[V,0] = [¥(r, Y), 6(z, Y)]ei** 22)

where 4 is the wave number of the disturbances, i =
J/—1. Substituting equation (22) into equations
(18)-(21), one obtains the following eigenvalue
problem:

|5 - @2 - 02— ey

+ iaGr[U(D2 —a¥) ¢y - D0yl =D(6), (23

[% - - ﬂ]" +iaGr{ 06 — D#Y] =0,
(24)

Yy=Dy=6=0 at Y=0,1 (25)

The above stability problem is solved by the appli-
cation of the Galerkin method [16]. Following Ozisik
and Hassab [17], the functions ¢ and 0 are represented
by a series of orthogonal functions that satisfy the

boundary conditions (25) as:
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Yo, Y)= 3 dul0)Pn(Y). (26)
m=1

r

Br.Y)= Y en(t)Yn(Y)

m=1

27

The orthogonal functions ¢,, and 8, are chosen as
[18],
coshaY —cos?%,Y

Y =
9n(¥) cosha — cos %,
B sin.h aY — %, s?n %mY’ (28)
sinha — %, sin %,
0.,(Y)=sin(mn)Y (29)
and %, s are the positive roots of
9”2 _ a2
(cosh acos % —1) + 2 sinhasin% =0
(30)

The above solutions for  and 8 are introduced into
equations (23) and (24) and the orthogonality con-
ditions are utilized to yield the following matrix
equation:

dx

— +BX=0

dr (1)

where, X = {d,,, e,,} " is the transpose of the coefficient
vector associated with N-term expansion, and B is a
matrix of 2N x 2N complex elements resulting from
orthogonalization. The matrix eigenvalue problem
(31) has a variable time coefficients because the
Grashof number Gr is a function of the melting
thickness h which is in turn a function of time h =
ZS\/ (at). However the rate of growth of this melting
thickness is expected to be much smaller than that of
the disturbance (¥ or 6). Therefore, it is quite reason-
able to treat the coefficients of the matrix B as
constants in solving it with the complex QR algorithm
[19, 20].

The stability criteria of this system is established by
determining its eigenvalues C, = C, + C;,(where C; =
wave speed, n = 1,2, ..., 2N). That s, for a given choice
of the system parameter T, there is a least of two
minimum values of Gr with respect to a that cause
either the real part of the least eigenvalue C, = 0, C; #
0 for travelling waves, or both components C, = C; =
0 in the case of stationary cells. Below this value the
heat flows by conduction only and the main flow is
stable. Therefore, this minimum Grashof number
corresponds to the onset of convection and is referred
to as the critical Grashof number Gr_. In carrying out
the computations by the Galerkin method, for Pr
based on the viscosity at the mean of the boundary
temperatures, it is found that 10 terms in the series of
trial functions are very sufficient to get an excellent
convergence in the range of interest of T,. A sample of
these results are illustrated in Table 1.

M. A. Hassab and M. M. SOROUR

Table 1. Gr, as a function of the number of approximation N

Data N 4 6 8 10 12
T, =1°C

Gr, 45675 420 4765 48023 481.25
a=1325
T, = 8°C

Gr, 3425 3271 3249 32473 3246.6
a=235

RESULTS AND DISCUSSION

The results of this analysis could be classified in
terms of the stepped wall temperature T, into three
regions of completely different characteristics : region I
(T, <71°C),regionIl (7.1 < T, < 9.4°C),and region
HI (T, > 9.4°C). Before presenting the effect of each
region on the onset of instability, it isimportant first, to
consider the base flow velocity profile in these regions
which will throw some light on this problem.

Figure 2(a)is a plot of the velocity profile in regions 1
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and III respectively. Clearly, in region I, a unicellular
motion sets up in such a manner that the fluid near the
hot wall descends down and that near the interface
ascends upward. Conversely, in region I11, an opposite
unicellular motion occurs. The reason for this is that:
In region 1, the water layer near the hot wall is denser
than that next to the interface, while in region I, the
reverse is true. However, in region II, the fluid at the
central part is denser than those next to the boun-
daries. Therefore, as it is shown in Fig. 2(b), two
parallel cells set up, with the fluid at the central part
moving downwards and those adjacent to the boun-
daries moving upwards. Furthermore, the effect of the
stepped wall temperature T, on the base flow velocity
U could be explained with the help of Fig. 3, which isa
plot of the average coefficient of thermal expansion fvs
T,  When T, < 82°C, § has a negative decreasing
function, and for T, > 8.2°C, B is positively increasing
with T ,. Since, the shear flow is driven by the bouyancy
effects which are linearly dependent upon §, so, increas-
ing T, will supress the non-dimensional base flow
velocity in region I while expanding it in region IIL

The solution of this problem for T, in the range
from 1 to 30°C (i.e. 8 < Pr < 13.5) indicates that the
onset of instability sets in as oscillating waves travell-
ing in the vertical direction with a wave speed, C,,
which is related to the maximum base flow velocity U ,,,
as shown in Fig. 4. It is to be noted that, for water at
room temperature or common fluids with Pr < 12.7,
the onset of instability sets in as horizontal stationary
cells [6]. The transition in the wave structure caused by
the density anomaly of water could be due to the
increasing participation of the potential energy as-
sociated with the perturbed bouyancy field on the
disturbance energy, although this is still less than that
generated from the base flow.

The calculations for the neutral stability curves
summarized in Fig. 5 show that, as T, isincreased, Gr,
increases in region I, has two peaks in region II at

IO-.I T T T T

¢

Wave speed,

16t | | J ; !

T, T
Fic. 4.

temperatures of of 7.3 and 9.2°C respectively, and then
gradually decreases in region III to a turning point at
Ty = 15°C where it increases again. The critical
condition is also defined by another Grashof number
Gr, based on the coefficient of thermal expansion  at
the interface (absolute value), in order to compare the
results with that for common fluids.

_ Bog Tih*

Gr =" (32)

where f, is obtainable from equation (3} as

1 dp
=i—— — = (24; — 34, T )T, (33
BO } Po a7 =0 ( Ay 2 m) o ( )
These two Grashof numbers are related by:
Gr = 8.3965 Gr/T,. (34)

In light of this relation, the modified critical Grashof
number Gr, is calculated in terms of T, and presented
with Gr_ in the same figure. As shown in the figure the
curve of Gr_ approaches an asymptotic value of about
1300 in region HI.

The wave size at the critical condition expressed by
the wave number a (@ = 2n/A, A = wavelength) is
found to vary with the stepped wall temperature T
reaching maximum value of a = 234 at T, = 8°C as
shown in Fig. 6.

So far, in presenting the stability results for the
critical Grashof numbers, we could not interpret the
effect of heating on the stability of the flow; that is, at
what values of T, the instability is enhanced and/or
delayed. The uncertainty is due to the dependence of
Gr upon both T, and the melting thickness & which is
not prescribable a priori. It is, therefore, appropriate to
recast the stability results in terms of the melting
thickness:
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2.5

22

o]

Wave number,

24 28

2 13
h= (fi%) (35)
19 1y,
and the melting time:
h2

=
¢ 28t.a

(36)

at the onset of instability as demonstrated in Fig. 7.
As shown in the Fig. 7, the effect of heating on the
stability criteria expressed by h_ and ¢ can be classified
into three known regions as follows:
(1) In region I, when T, < 4°C, the density profile

24 26

has no maximum value, ie. heating increases the
density difference across the fluid layer, and accord-
ingly, destablizing the flow. When T, > 4°C, the
density profile has a maximum value due to the shift of
the maximum density layer from the hot wall. In this
case, heating has a smaller destabilizing rate although
the instability sets in earlier owing to the higher
temperature difference across the melted layer.

(2) In region II, an interesting but unexpected
variation of h and t_ with the stepped wall temperature
T, is noticed. This trend may be attributed to the
transition in the wave structure from two-column
waves for T, < 7.1°C, to three-column waves for 7.1 <
T, £ 9.4°C, and back as two-column waves for 7| >
94°C.

(3) In region 111, heating has a significant destabiliz-
ing effect because of the strong bending of the density
profile resulting from the pronounced increase of the
density difference.

SUMMARY AND CONCLUSIONS

The results of this problem which concerned with
the stability of natural convection in a vertical melted
ice layer initially at 0°C could be classified in terms of
the stepped wall temperature T, into three regions:

(1) For T, < 7.1°C, the instability sets in as two-
column waves travelling oppositely in the vertical
direction with a wave speed which is nearly equal to the
maximum base flow velocity. As T, is increased, the
wavelength increases to about 2.6 times the melting
thickness h. Although heating increases Gr., it is
actually destabilizing the flow with a decreasing rate.

(2) For 7.1 < T, < 9.4°C, the instability sets in as
three-column waves. In this region, minimum wavel-
ength and minimum wave speed occur at 8°C. Con-
versely, maximum values of Gr, are observed at T, =
7.3 and 9.2°C respectively. In this region heating also
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destabilize the flow.

(3) For T, > 9.4°C, the instability sets back as two-
column waves with both wave speed and wavelength
increasing as T, is increased. Moreover, heating has a
destabilizing effect on the flow.
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APPARITION DE LA CONVECTION DANS UNE COUCHE DE GLACE EN FUSION ENTRE
DES PLAQUES VERTICALES

Résumé—On étudie par une théorie linéaire la stabilité du régime de conduction de la convection naturelle
dans une couche verticale de glace en fusion initialement a la température de fusion. Les courbes de stabilité,
Gr. = Gr(T,)eth, = h(T,), montrent que le nombre de Grashof critique Gr, et 'épaisseur critique fondue
h.sont dépendants de la température de la paroi T, et lorsque T', augmente le changement de mode transfert
entre la conduction et la convection est accru pour toutes valeurs de T, dans le domaine 1-30°C. De plus
Iinstabilité apparait en ondes se déplagant verticalement, avec un écoulement secondaire avec des ondes a
deux colonnes pour T, < 7,1°Cet T, > 9,4°C, et des ondes & trois colonnes pour 7,1°C < T; < 94°C.

EINSETZEN DER KONVEKTION IN EINER SCHMELZENDEN EISSCHICHT ZWISCHEN
SENKRECHTEN PLATTEN

Zusammenfassung—Die Stabilitdt des Bereichs der Warmeleitung der freien Konvektion in einer
senkrechten schmelzenden Eisschicht wird unter der Annahme, daB sie zu Beginn die Schmelztemperatur
habe, mit Hilfe der linearen Theorie untersucht. Die Stabilitdtskurven Gr, = Gr (T )und h, = h(T,) zeigen,
daf3 die kritische Grashof-Zahl Gr, und die kritische Schmelzdicke 4_ von der sprungartig aufgebrachten
Wandtemperatur T, in der Weise abhingig sind, daB mit steigendem 7, die Anderung der Wirmeiiber-
gangsform von Leitung in Konvektion fiir alle Werte von T, im Bereich von 1 bis 30°C beschleunigt wird.
Ferner wurde gefunden, daB3 die Instabilitdt in Form senkrecht wandernder Wellen einsetzt, wobei die
Sekundirstrémung fiir T, < 7,1°Cund T, > 9,4°C als Zweisdulen-Welle und fiir 7, 1°C < T, < 9,4°Cals
Dreisaulen-Welle erscheint.

BO3HMKHOBEHHME KOHBEKLMHU I1PHU IJIABJJEHWUH CJ10A JIbJA MEXAY
BEPTUKAJIbBHBIMHU THJIACTUHAMH

Antotams — C noMoLIbIO JIMHEHHON TEOPHH HCCIIEAYETCS YCTOHYHBOCTL PEXHMa TEMJIONPOBOAHOCTH
TP €CTECTBEHHON KOHBEKLMH B BEPTHKAJILHOM Cj0€ JibJa NpH ero niassieHuH. [Ipennonaraercs, uro
BHa4ajie ClOH HaxoOMTCs MpH Temnepatype niaBieHus. Kpusbie ycroiwmBoctn Gr. = Gr(T|) u
h. = h(T,) noka3bIBaloT, 4YTO KpHTH4eckoe uucio ['pacrodpa Gr. M KpUTHHECKAs TOJLIMHA 3OHBI
pacnjaBa h. 3aBUCAT OT TeMnepatypnl cTeHkM T): no mepe ypeauueHua T, nepexoa oT pexuma
TEMJIONPOBOAHOCTH K KOHBEKLMM YCUIMBA€TCH NPU BCEX 3HAa4YEHHAX T, JNeXalluX B AMANa3oOHe OT
I no 30°C. KpoMe TOro HaiaeHo, 4TO HEyCTOHYMBOCTb BO3HMKAeT B BHIAE BEPTHKAJbHbIX Oeryumx
BOJIH, nipudeM nipu 7| < 7,1°C u Ty > 9,4°C BTOpHYHOE TeU€HHE COCTOMT U3 ABYXPSAHBIX BOJIH, a MPH
7.1"C < Ty < 9,4°C -—— u3 TpexpAIHbIX BOJH.



